
HMMC-5021 (2-22 GHz), HMMC-5026 (2-26.5 GHz)

GaAs MMIC Traveling Wave Amplifiers

Data Sheet

Chip Size: 2980 x 770 µm (117.3 x 30.3 mils) Chip Size Tolerance: ±10 µm (±0.4 mils) Chip Thickness: 127 \pm 15 μ m (5.0 \pm 0.6 mils)

Pad Dimensions: 75 x 75μm (2.95 x 2.95 mils), or larger

Description

The HMMC-5021/26 is a broadband GaAs MMIC Traveling Wave Amplifier designed for high gain and moderate output power over the full 2 to 26.5 GHz frequency range. Seven MESFET cascode stages provide a flat gain response, making the HMMC-5021/26 an ideal wideband gain block. Optical lithography is used to produce gate lengths of \approx 0.4 μm . The HMMC-5021/26 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

Features

• Wide-frequency range: 2 – 26.5 GHz

• High gain: 9.5 dB

• Gain flatness: ±0.75 dB

• Return loss: Input: -14 dB

Output: -13 dB

• Low-frequency operation capability: < 2 GHz

• Gain control: 35 dB dynamic range

• Moderate power: 20 GHz: P-1dB: 18 dBm

P_{sat}: 20 dBm

26.5 GHz: P-1dB: 15 dBm

P_{sat}: 17 dBm

Absolute Maximum Ratings[1]

Parameters/Conditions	Symbol	Min.	Max.	Units
Positive Drain Voltage	V_{DD}		8.0	V
Total Drain Current	I _{DD}		250	mA
First Gate Voltage	V _{G1}	-5	0	V
First Gate Current	I _{G1}	-9	+5	mA
Second Gate Voltage	$V_{G2}^{[2]}$	-2.5	+3.5	V
Second Gate Current	I _{G2}	7		mA
DC Power Dissipation	P_{DC}		2.0	watts
CW Input Power	P _{in}		23	dBm
Operating Channel Temp.	T _{ch}		+150	°C
Operating Case Temp.	T _{case}	-55		°C
Storage Temperature	T _{stg}	-65	+165	°C
Max. Assembly Temp. (for 60 seconds max.)	T _{max}		300	°C

- 1. Operation in excess of any one of these conditions may result in permanent damage to this device. TA = 25° C except for Tch, TSTG, and Tmax-
- 2. Minimum voltage on V_{G2} must not violate the following: V_{G2} (min) $> V_{DD} 9$ volts.

DC Specifications/Physical Properties^[1] (Applies to all part numbers)

Parameters and Test Conditions	Symbol	Min.	Тур.	Max.	Units
Saturated Drain Current ($V_{DD} = 7.0 \text{ V}$, $V_{G1} = 0 \text{ V}$, $V_{G2} = \text{open circut}$)	I _{DSS}	115	180	250	mA
First Gate Pinch-Off Voltage ($V_{DD} = 7.0 \text{ V}$, $I_{DD} = 16 \text{ mA}$, $V_{G2} = \text{open circut}$)	V _P	-3.5	-1.5	-0.5	V
Second Gate Self-Bias Voltage ($V_{DD} = 7.0 \text{ V}, V_{G1} = 0 \text{ V}$)	V_{G2}		2.1		V
First Gate Pinch-Off Current ($V_{DD} = 7.0 \text{ V}$, $V_{G1} = -3.5 \text{ V}$, $VG2 = \text{open circut}$)	I _{DSOFF}		4		mA
Second Gate Pinch-Off Current ($V_{DD} = 5.0 \text{ V}$, $V_{G1} = 0 \text{ V}$, $V_{G2} = -3.5 \text{ V}$)	I _{DSOFF}		8		mA
Thermal Resistance (T _{backside} = 25° C)	$\theta_{\text{ch-bs}}$		36		°C/W

Note:

HMMC-5021, -5026 RF Specifications, $V_{DD} = 7.0 \text{ V}$, $I_{DD}(Q) = 150 \text{ mA}$, $Z_{in} = Z_o = 50 \Omega^{[1]}$

	Symbol	2.0 – 22.0 GH HMMC-5021	2.0 – 22.0 GHz HMMC-5021				
Parameters/Conditions		Тур.	Min.	Тур.	Max.	Units	
Guaranteed Bandwidth	BW	2–22	2		26.5	GHz	
Small Signal Gain	S ₂₁	10	7.5	9.5	12	dB	
Small Signal Gain Flatness	ΔS_{21}	+0.5		+0.75	+1.0	dB	
Minimum Input Return Loss	RL _{in(min)}	16	10	14		dB	
Minimum Output Return Loss	RL _{out(min)}	13	10	13		dB	
Minimum Reverse Isolation	Isolation	32	20	30		dB	
Output Power at 1 dB Gain Compression	P _{-1dB}	18	12	15		dBm	
Saturated Output Power	P _{sat}	20	14	17		dBm	
Max. Second Harm. $(2 < f_0 < 20)$, $[P_0(f_0) = 17 \text{ dBm or } P_{-1dB}$, whichever is less.]	H _{2(max)}	-25		-25	-20	dBc	
Max. Third Harm. $(2 < f_0 < 20)$, $[P_0(f_0) = 17 \text{ dBm or P}_{-1dB}$, whichever is less.]	H _{3(max)}	-34		-34	-20	dBc	
NF Noise Figure	NF	8		10		dB	

Notes

^{1.} Measured in wafer form with T_{chuck} = 25° C. (Except $\theta_{ch\text{-}bs\text{-}}$)

^{1.} Small-signal data measured in wafer form with T_{chuck} = 25° C. Large-signal data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ T_A = 25° C.

^{2.} Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper -3 dB corner frequency ≈ 29.5 GHz.

Applications

The HMMC-5021/26 series of traveling wave amplifiers are designed for use as general purpose wideband gain blocks in commu-nication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain re-sponse and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

Biasing and Operation

These amplifiers are biased with a single positive drain supply (V_{DD}) and a single negative gate supply (V_{G1}). The recommended bias conditions for the HMMC-5021/26 are $V_{DD}=7.0\ V$, $I_{DD}=150\ mA$ for best overall performance. To achieve this drain current level, V_{G1} is typically biased between -0.2 V and - 0.5 V. No other bias supplies or connections to the device are required for 2 to 26.5 GHz operation. See Figure 3 for assembly information.

The HMMC-5021/26 is a DC coupled amplifier. External coupling capacitors are needed on RF IN and RF OUT ports. The drain bias pad is connected to RF and must be decoupled to the lowest operating frequency.

The auxiliary gate and drain contacts are provided when performance below 1 GHz in required. Connect external capacitors to ground to maintain input and output VSWR at low frequencies (see Additional References). Do not apply bias to these pads.

The second gate (V_{G2}) can be used to obtain 35 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its self-bias voltage is $\approx +2.1$ V. Applying an external bias between its open-circuit voltage and -2.5 volts will adjust the gain while maintaining a good input/ output port match.

Assembly Techniques

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly. MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability. Avago application note #54, "GaAs MMIC ESD, Die Attach and Bonding Guidelines" provides basic information on these subjects.

Additional References

AN# 31, "2–26.5 GHz Variable Gain Amplifier Using HMMC-5021/22/26 and HMMC-1002 GaAs MMIC," AN# 34, "HMMC-5021/22/26/27 TWA Environmental Data," AN# 41, "HMMC-5021/22/26 S-Parameters Performance as a Function of Bonding Configuration," AN# 47, "HMMC-5021/22/26 2–26.5 GHz GaAs MMIC Distributed Amplifier Conversion Guide," and AN# 1053, "Designing with HMMC-5021/22/26 and HMMC-5027 GaAs MMIC Amplifiers."

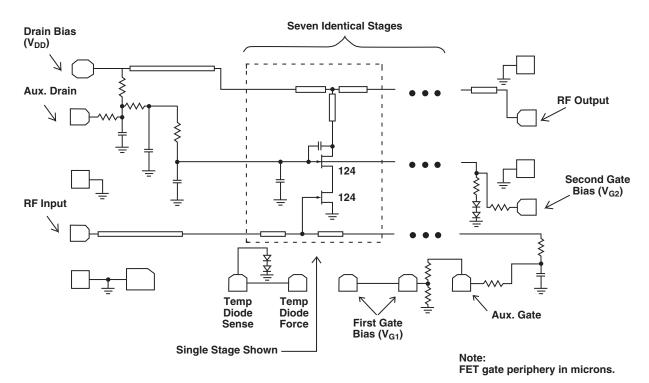


Figure 1. Schematic.

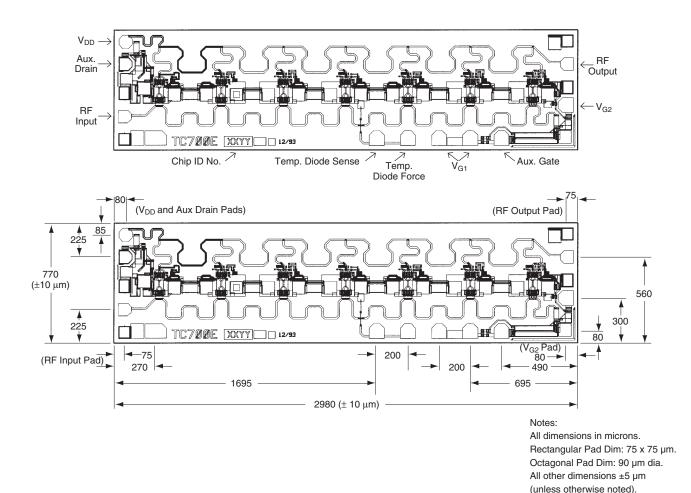
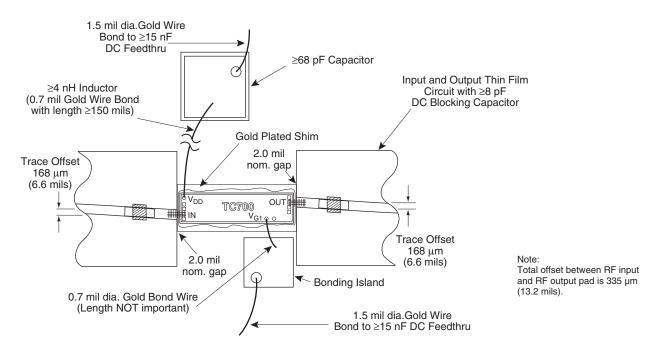



Figure 2. HMMC-5021/26 Bonding Pad Locations.

Chip thickness: 127 ±5 µm.

Figure 3. HMMC-5021/26 Assembly Diagram. (For 2.0-26.5 GHz Operation)

HMMC-5021/26 Typical Performance

 $V_{DD} = 7.0 \text{ V}, I_{DD} = 150 \text{ mA}$ 10 \gg S₂₂ 15 20 25 25 30 OUTPUT RETURN LOSS (dB) INPUT RETURN LOSS (dB) 20 25 30 35 35 40 <u></u> 40 30 10 18 22 26 6 14 FREQUENCY (GHz)

Figure 4. Typical Gain and Reverse Isolation vs. Frequency.

Figure 5. Typical Input and Output Return Loss vs. Frequency.

Typical Scattering Parameters^[1], $(T_{chuck} = 25^{\circ} \text{ C}, V_{DD} = 7.0 \text{ V}, I_{DD} = 150 \text{ mA}, Z_{in} = Z_{out} = 50 \Omega)$

Freq.	S11			S21			S12			S22		
GHz	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
2.0	-22.6	0.074	-174.1	-53.1	0.0022	167.3	10.1	3.183	123.6	-28.9	0.036	77.3
3.0	-30.6	0.030	130.4	-51.0	0.0028	120.1	10.0	3.173	102.1	-21.6	0.083	64.1
4.0	-37.8	0.013	-19.8	-48.0	0.0040	95.0	10.2	3.225	78.2	-18.2	0.124	45.4
5.0	-29.4	0.034	-79.9	-46.8	0.0046	67.1	10.3	3.275	53.5	-16.3	0.153	23.4
6.0	-26.6	0.047	-113.8	-44.4	0.0060	36.0	10.4	3.303	28.1	-15.4	0.170	2.5
7.0	-26.6	0.047	-137.0	-44.1	0.0062	1.0	10.4	3.330	2.3	-15.7	0.165	-19.5
8.0	-27.7	0.041	-152.6	-43.4	0.0067	-27.5	10.5	3.331	-23.8	-17.0	0.141	-40.7
9.0	-29.0	0.035	-149.8	-44.3	0.0061	-31.8	10.4	3.312	-50.2	-19.2	0.110	-59.7
10.0	-29.0	0.036	-140.8	-43.0	0.0071	-53.6	10.3	3.282	-76.4	-24.3	0.061	-76.8
11.0	-27.3	0.043	-138.1	-41.6	0.0083	-74.8	10.2	3.253	-102.5	-35.1	0.018	-32.6
12.0	-26.2	0.049	-141.9	-40.0	0.0100	-96.9	10.2	3.227	-128.8	-24.6	0.059	21.0
13.0	-25.8	0.052	-148.5	-38.9	0.0113	-120.9	10.2	3.218	-155.4	-19.7	0.103	2.8
14.0	-26.4	0.048	-143.0	-38.1	0.0125	-145.6	10.1	3.204	177.8	-17.6	0.132	-21.2
15.0	-24.6	0.059	-131.7	-36.6	0.0148	-169.9	10.1	3.197	150.4	-17.0	0.141	-44.8
16.0	-21.6	0.083	-133.7	-35.3	0.0172	160.9	10.0	3.177	122.5	-17.1	0.140	-67.4
17.0	-19.4	0.107	-143.5	-35.0	0.0177	130.6	10.0	3.149	94.4	-18.5	0.119	-91.8
18.0	-18.3	0.121	-158.7	-34.7	0.0184	105.0	9.9	3.138	65.9	-21.8	0.081	-116.0
19.0	-18.7	0.116	-172.6	-33.9	0.0201	80.2	9.9	3.140	36.8	-28.9	0.036	-121.7
20.0	-20.3	0.097	-179.5	-33.3	0.0217	50.7	10.0	3.151	6.6	-28.5	0.038	-57.0
21.0	-21.8	0.082	-168.3	-32.7	0.0233	22.5	10.0	3.150	-24.9	-21.7	0.082	-59.1
22.0	-19.9	0.101	-155.3	-31.7	0.0259	-8.4	9.9	3.126	-57.5	-18.6	0.117	-81.5
23.0	-17.3	0.137	-158.8	-31.4	0.0268	-39.5	9.8	3.076	-91.0	-17.3	0.137	-103.3
24.0	-16.3	0.153	-169.9	-30.7	0.0291	-71.5	9.7	3.045	-125.5	-17.3	0.137	-123.8
25.0	-17.1	0.139	-175.4	-30.0	0.0317	-106.2	9.7	3.045	-162.2	-18.5	0.118	-135.3
26.0	-17.0	0.141	-165.0	-29.2	0.0345	-145.5	9.6	3.027	157.2	-19.4	0.107	-122.5
26.5	-15.7	0.163	-161.1	-29.0	0.0356	-166.7	9.5	2.970	135.4	-17.6	0.132	-114.2
27.0	-14.3	0.192	-162.7	-28.9	0.0357	171.7	9.2	2.876	112.9	-15.3	0.173	-116.0
28.0	-13.2	0.220	-175.7	-28.8	0.0362	126.3	8.5	2.648	65.8	-12.6	0.233	-138.1
29.0	-14.1	0.197	-176.9	-28.6	0.0371	73.0	7.7	2.433	10.3	-15.4	0.170	-144.7
30.0	-11.5	0.266	-171.6	-30.8	0.0287	4.8	4.6	1.689	-61.1	-8.7	0.369	-123.6

Note:

^{1.} Data obtained from on-wafer measurements.

HMMC-5021/26 Typical Temperature Performance

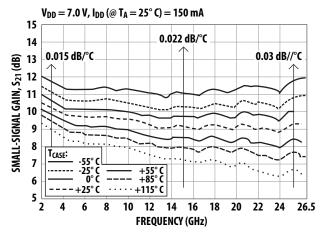
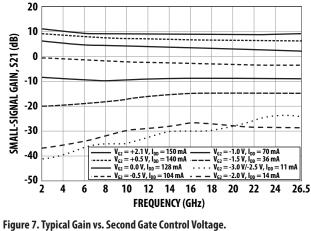



Figure 6. Typical Small-Signal Gain vs. Temperature.

 $V_{DD} = 7.0 \text{ V}, V_{GI} \cong -0.3 \text{ V}$

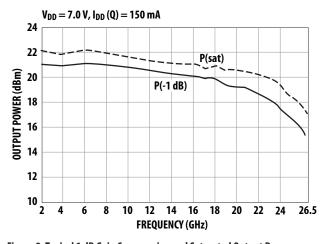


Figure 8. Typical 1 dB Gain Compression and Saturated Output Power.

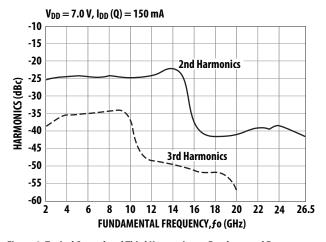


Figure 9. Typical Second and Third Harmonics vs. Fundamental Frequency at $P_{OUT} = +17 \text{ dBm}.$

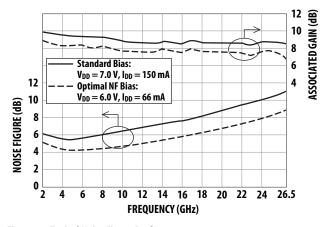


Figure 10. Typical Noise Figure Performance.

1. All data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ T_A = 25° C (except where noted).

Note:

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

